				1
1		mark		Sub
(i)	$x = 14\cos 60t$	M1	Consider motion in <i>x</i> direction. Need not resolve.	
	SO $x = 7t$	A1	Allow $\sin \leftrightarrow \cos$. Condone +1 seen. Need not be simplified.	
	$y = 14\sin 60t - 4.9t^2 + 1$	M1	Suitable <i>uvast</i> used for y with $g = \pm 9.8, \pm 10, \pm 9.81$ soi	
			Need not resolve. Allow sin ↔ cos.	
		A1	Allow + 1omitted. Any form and 2 s. f. Need not be simplified	
	$y = 7\sqrt{3}t - 4.9t^2 + 1$	A1	All correct. +1 need not be justified.	
	$(y=12.124t-4.9t^2+1)$		Accept any form and 2 s. f. Need not be simplified.	
				5
(ii) (A)	time taken to reach highest point			
	$0 = 7\sqrt{3} - 9.8T$	M1	Appropriate <i>uvast</i> . Accept $u = 14$ and $\sin \leftrightarrow \cos$ and $u \leftrightarrow v$.	
			Require $v = 0$ or equivalent.	
	. G		$g = \pm 9.8, \pm 10, \pm 9.81 \text{ soi.}$	
	so $\frac{5\sqrt{3}}{7}$ s (1.23717 = 1.24 s (3 s. f.))	A 1	ca	
	1./)		[If time of flight attempted, do not award M1 if twice interval obtained]	
				2
(B)	distance from base is $7 \times \frac{5\sqrt{3}}{7} = 5\sqrt{3}$ m	M1	Use of their $x = 7t$ with their T	
	(= 8.66025 so 8.66 m (3 s. f.))	B1	FT their <i>T</i> only in $x = 7t$. Accept values rounding to 8.6 and 8.7.	
				2
(C)	either Height at this time is			
	$H = 7\sqrt{3} \times \frac{5\sqrt{3}}{7} - 4.9 \times \left(\frac{5\sqrt{3}}{7}\right)^2 + 1$	M1	Subst in their quadratic y with their T .	
	. ,	A1	Correct subst of their T in their y which has attempts at all 3 terms. Do not accept $u = 14$.	
	= 8.5	A1	1 σ ποι αυτερι <i>u</i> = 14.	

	clearance is $8.5-6=2.5$ m	E1	Clearly shown.	
	or for height above pt of projection $0 = (7\sqrt{3})^2 + 2 \times -9.8 \times s$	M1	Appropriate $uvast$. Accept $u = 14$. $g = \pm 9.8, \pm 10, \pm 9.81$ soi Attempt at vert cpt accept $\sin \leftrightarrow \cos$. Accept sign errors but not $u = 14$.	
	s = 7.5 so clearance is $7.5 - 5 = 2.5$ m	A1 E1	Clearly shown.	4
(iii)	See over			
(iii)	Elim t between $y = 7\sqrt{3}$ $= 7t$ so $y = 7\sqrt{3}\frac{x}{7} - 4.9\left(\frac{x}{7}\right)^2 + 1$ so $y = \sqrt{3}x$	M1 F1	their quadratic y (accept bracket errors) Must see their $t = x/7$ fully substituted in Accept any form correctly written. FT their x and 3 term quadratic y (neither using $u = 14$)	2
(iv)	either need $6 = 7\sqrt{3}t - 4.9t^2 + 1$ so $4.9t^2 - 7\sqrt{3}t + 5 = 0$ $t = \frac{5(\sqrt{3} \pm 1)}{7} (0.52289 \text{ or}$ $1.95146)$ moves by $\left(\frac{5(\sqrt{3} + 1)}{7} - \frac{5\sqrt{3}}{7}\right) \times 7$ $[(1.95146 1.23717) \times 7]$ = 5 m	M1 M1 A1 M1	their quadratic y from (i) = 6, or equivalent. Dep. Attempt to solve this 3 term quadratic. (Allow $u = 14$). for either root Moves by their root - their (ii)(A) ×7 or equivalent. Award this for recognition of correct dist (no calc) cao [If new distance to wall found must have larger of 2 +ve roots for 3 rd M and award max 4/5 for 13.66]	
	or using equation of trajectory with $y = 6$			

$6 = \sqrt{3}x - 0.1x^2 + 1$ Solving $x^2 - 10\sqrt{3}x + 50 = 0$	M1 M1	Equating their quadratic trajectory equn to 6 Dep. Attempt to solve this 3 term quadratic. (Allow $u = 14$).	
$x = 5(\sqrt{3} \pm 1)$ (13.660 or 3.6602)	A1	for either root	
distance is $5(\sqrt{3}+1)-5\sqrt{3}$	M1	distance is their root – their(ii)(B)	
		Award this for recognition of correct dist (no calc)	
= 5 m	A1	Cao [If new distance to wall found must have	
		larger of 2 + ve roots for 3 rd M and award max 4/5 for 13.66]	
			5
			20

2		mark		
(i)	Heide and allow Control in the inventor			
	Height reached by first particle is given by	M1	Other methods must be complete. Allow $g = \pm 9.8, \pm 10$	
	$0 = 21^2 - 2 \times 9.8 \times s$	IVII	Other methods must be complete. Allow $g = \pm j.0, \pm 10$	
	so $s = 22.5$ so 22.5 m	A1	Accept with consistent signs	
				2
(ii)	Sol (1)	3.41	Allow $g = \pm 9.8, \pm 10$	
(11)	t seconds after second particle projected its	M1	Allow $g = \pm 9.8, \pm 10$	
	height is $15t - 4.9t^2$	A1		
	and the first particle has height $22.5 - 4.9t^2$	M1	Allow $g = \pm 9.8, \pm 10$	
	$(or 21t - 4.9t^2)$			
		A1	Award only if used correctly	
	either	Г1	1 2 54 1 2 2 5 1 St 0 1 7 5 2 nd	
	Sub $t = 1.5$ to show both have same value	E1 A1	(or sub $t = 3.64$ into $21t - 4.9t^2$ for 1^{st} & $t = 1.5$ for 2^{nd})	
	State height as 11.475 m	AI	cao. Accept any reasonable accuracy. Don't award if only one correctly used equation obtained.	
	or		only one correctly used equation octamed.	
	$15t - 4.9t^2 = 22.5 - 4.9t^2$	M1		
	giving $t = 1.5$ and height as 11.475 m	A1	Both. t shown. Ht cao (to any reasonable	
			accuracy)	
	Sol (2)	M1	Allow $g = \pm 9.8, \pm 10$	
	t seconds after second particle projected its		Allow $g = \pm 9.8, \pm 10$	
	height is $15t - 4.9t^2$	A1		
	and the first particle has fallen $4.9t^2$	B1		
	Collide when $15T - 4.9T^2 + 4.9T^2 = 22.5$	M1	Or other correct method	
	so $T = 1.5$	E1	of other correct method	
	$H = 22.5 - 4.9 \times 1.5^2 = 11.475 \text{ m}$	A1	cao. Accept any reasonable accuracy. Don't award if	
	11 - 22.3 7.7\1.3 -11.7/3 111		only one correctly used equation obtained.	
			The second are equation or annual.	6
	total	8		

3		mark		
(i)	Horiz (40 cos 50)t	B1		
	Vert $(40\sin 50)t - 4.9t^2$	M1 A1	Use of $s = ut + 0.5at^2$ with $a = \pm 9.8$ or ± 10 . Allow $u = 40$. Condone $s \leftrightarrow c$. Any form	3
(ii)	_			
	Need $(40\sin 50)t - 4.9t^2 = 0$	M1	Equating their <i>y</i> to zero. Allow quadratic <i>y</i> only	
	so $t = \frac{40 \sin 50}{4.9}$	M1	Dep on 1 st M1. Attempt to solve.	
	= 6.2534 so 6.253 s (3 d. p.)	E1	Clearly shown [or M1 (allow $u = 40$ and $s \leftrightarrow c$) A1 time to greatest height; E1]	
	Range is $(40\cos 50) \times 6.2534$	M1	Use of their horiz expression	
	= 160.78 so 161 m (3 s. f.)	A1	Any reasonable accuracy	5
(iii)	Time AB is given by $(40 \cos 50)T = 30 \text{ so } T = 1.16679 \text{ so } 1.17 \text{ s}$ then either	M1 A1	Equating their linear <i>x</i> to 30.	
	By symmetry, time AC is time AD – time AB	M1	Symmetry need not be explicit. Method may be implied. Any valid method using symmetry.	
	so time AC is $6.2534 \frac{30}{40\cos 50}$ = 5.086 so 5.09 s (3 s. f.) or height is $(40\sin 50)T - 4.9T^2$	A1	cao	
	and we need $(40\sin 50)t - 4.9t^2 = (40\sin 50)T - 4.9T^2$ solved for larger root	M1	Complete method to find time to second occasion at that height	
	i.e. solve $4.9t^2 - (40\sin 50)t + 29.08712 = 0$ for larger root giving 5.086	A1	cao	4
(iv)	&= 40 cos 50	B1	Must be part of a method using velocities.	
	$\$ = 40 \sin 50 - 9.8 \times 5.086$	M1 A1	Use of vert cpt of vel Allow only sign error. FT use of their 5.086	
	Need $\arctan \frac{\$}{\$}$	M1	May be implied. Accept $\arctan \frac{\$}{\$}$ but not use of $\$$.	
	So –36.761° so 36.8° below horizontal (3 s f.)	A1	Accept ±36.8 or equivalent. Condone direction not clear.	5
	total	17		